International Symposium on New Horizons in Forestry 18-20 October 2017 | Isparta - Turkey



## **Oral presentation**

# Evaluation of different supervised classification algorithms for crown closure classes: A case study of Yapraklı Forest Planning Unit, Çankırı

Sinan Bulut<sup>1,\*</sup>, Alkan Günlü<sup>1</sup>, Sedat Keleş<sup>1</sup>

<sup>1</sup> Çankırı Karatekin University, Faculty of Forestry, Department of Forest Engineering, Çankırı, Turkey

\* Corresponding author: snnblt15@gmail.com

**Abstract:** Remote sensing and Geographic Information Systems (GIS) provide novel occasions for forest inventory and ecosystem values. Forest inventory has been made by field measurements and remote sensing methods. Field measurements are mostly expensive, cumbersome and time-consuming. Recently, satellite images have been used successfully for large area applications, such as for national forest inventories. The use of satellite images has played significant role in determining forest stand attributes such as crown closures, development stages and land use. However, remote sensing methods have been used to estimate and monitor forest stand parameters with reasonable accuracy levels in large areas. Remote sensing technologies have been successfully used in carrying out of forest inventories and have played a vital role in estimation of forest stand parameters at a low cost and plausible effort with adequate accuracy. There are many algorithms that can be used to classify satellite images. Support vector machines (SVM), highest probability, maximum likelihood (MLC), closest distance, classifier of Mahalanobis, artificial neural networks and decision trees are some of them. The objective of this research was to classify crown closure classes using Landsat TM satellite image with different supervised classification algorithms in Yaprakli Forest Planning Unit. For this purpose, the MLC method and linear, polynomial, radial and sigmoid kernel functions for SVM were used. The SVM method 80002 kappa statistic and 72% overall accuracy assessments, respectively. The SVM radial function for these values was 0.6797 and 80%.

Keywords: Crown closure, Image classification, Landsat TM, Maximum likelihood classification, Support vector machine

#### 1. Introduction

Remote sensing are being investigated in almost every aspect and are being continuously improved especially in the field of forestry. One of the remote sensing techniques researched and developed in forestry is satellite image classification. Some of these techniques such as maximum likelihood, support vector machines, neural network, decision trees are widely used to different criteria such as development stage, crown closure, tree species, land use. Moreover, new techniques are always being investigated for image classification and evaluated for maximum accuracy and ease of use (Günlü et al., 2008; Kavzoğlu and Çölkesen, 2010; Otukei and Blasche, 2010; Günlü et al., 2011; Srivastava et al., 2012; Günlü, 2012; Taati et al., 2014; Bulut and Günlü, 2016). We focused on estimating crown closure with remote sensing techniques.

Crown closure is an indicator for productivity of forests. Especially, it is an effective parameter to decide on silvicultural applications. Remote sensing studies are used effectively in estimating this parameter. In this study, we compared performance of image classification techniques (maximum likelihood, SVM linear, SVM polynomial, SVM radial and SVM sigmoid kernel functions) in terms of crown closure.

### 2. Material and method

### 2.1. Study area

Our study area, Yapraklı Forest Planning Unit is located in Ankara Regional Forest Directorate with a total area of 29380.30 ha (Figure 1). It is bounded by 563243-572062 on the east longitudes and 4501061-4522167 on the North latitudes (ED 1950, UTM Zone 36N). Average altitude, precipitation and temperature of study area are 1348 m, 397.7 mm and 11.1 C°, respectively. The study area is covered by trees that include Black pine, Scots pine, Fir, Cedar, Oak and Poplar (Table 1).

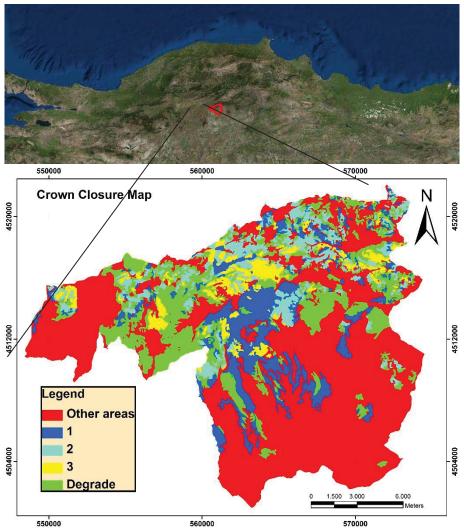



Figure 1. Study area

## 2.2. Satellite image and classification

The Landsat TM satellite image, which was consisted of six spectral bands (TM1, TM2, TM3, TM4, TM5 and TM7) with 30 m spatial resolution, was acquired on 2010. Stand map of Yapraklı Forest Planning Unit was used as reference data. Supervised classification methods that maximum likelihood, SVM linear, SVM polynomial, SVM radial and SVM sigmoid were applicated with ENVI 5.2 software. Five different crown closure classes were created. These classes are 1 (%11-40), 2 (%41-70), 3 (%71-100), degrade (%0-10) and other areas (settlement, agriculture). Signatures for each classes were taken through stand map and five different supervised classification methods were tested for crown closure. The most accurate parameters for SVM methods were found through trial and error (Table 1).

| Table 1. SVM classification parameters | Table 1 | . SVM | classification | parameters |
|----------------------------------------|---------|-------|----------------|------------|
|----------------------------------------|---------|-------|----------------|------------|

|                | aton parameters |       |   |   |  |
|----------------|-----------------|-------|---|---|--|
| Methods        | р               | g     | r | d |  |
| SVM Linear     | 200             |       |   |   |  |
| SVM Radial     | 1000            | 0.150 |   |   |  |
| SVM Polynomial | 1000            | 0.150 | 1 | 6 |  |
| SVM Sigmoid    | 100             | 0.150 | 1 |   |  |
| -              |                 |       |   |   |  |

p: penalty parameter, g: gamma, r: bias and d: degree of kernel polynomial

#### 3. Results and discussion

The most accurate classification was applicated with SVM radial method. It's kappa statistics value was 0.6797 and overall accuracy was 79.6704 %. The lowest result was obtained for SVM sigmoid method. Kappa statistics and overall accuracy of this method were 0.5577 and 72.3290%, respectively. Performance criteria and confusion matrix of all methods were represented (Table 2-7).

| Classification metho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                            | Kappa statistics                                                                                                                                    |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                 |                                                                              | ccuracy (%)                                                                                                                   |                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Maximum likelihoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d                                                                                                                                                                                          | 0.6002                                                                                                                                              |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                 | 72.1903                                                                      |                                                                                                                               |                                                                                                                               |
| SVM linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                            | 0.5933                                                                                                                                              |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                 | 74.4955                                                                      |                                                                                                                               |                                                                                                                               |
| SVM polynomial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                            | 0.6792                                                                                                                                              |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                 | 79.6241                                                                      |                                                                                                                               |                                                                                                                               |
| SVM radial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                            | 0.6797                                                                                                                                              |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                 | 79.6704                                                                      |                                                                                                                               |                                                                                                                               |
| SVM sigmoid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                            | 0.5577                                                                                                                                              |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                 | 72.3290                                                                      |                                                                                                                               |                                                                                                                               |
| Table 3 Confusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n matrix of maximum                                                                                                                                                                        | likelihood method                                                                                                                                   |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                 |                                                                              |                                                                                                                               |                                                                                                                               |
| Class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Other areas                                                                                                                                                                                | Degrade                                                                                                                                             | 1                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                               | 3                                                                            | PA (%)                                                                                                                        | UA (%)                                                                                                                        |
| Other areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4500                                                                                                                                                                                       | 71                                                                                                                                                  | 94                                                                                                                                                                                                                | 8                                                                                                                                                                                                                                               | 2                                                                            | 76.40                                                                                                                         | 96.26                                                                                                                         |
| Degrade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 435                                                                                                                                                                                        | 1162                                                                                                                                                | 94                                                                                                                                                                                                                | 74                                                                                                                                                                                                                                              | 9                                                                            | 63.22                                                                                                                         | 65.50                                                                                                                         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 896                                                                                                                                                                                        | 353                                                                                                                                                 | 809                                                                                                                                                                                                               | 114                                                                                                                                                                                                                                             | 18                                                                           | 63.95                                                                                                                         | 36.94                                                                                                                         |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59                                                                                                                                                                                         | 243                                                                                                                                                 | 229                                                                                                                                                                                                               | 572                                                                                                                                                                                                                                             | 92                                                                           | 61.31                                                                                                                         | 47.87                                                                                                                         |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                          | 9                                                                                                                                                   | 39                                                                                                                                                                                                                | 165                                                                                                                                                                                                                                             | 755                                                                          | 86.19                                                                                                                         | 78.00                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n matrix of SVM linea                                                                                                                                                                      |                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                 |                                                                              |                                                                                                                               |                                                                                                                               |
| Class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Other areas                                                                                                                                                                                | Degrade                                                                                                                                             | 1                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                               | 3                                                                            | PA (%)                                                                                                                        | UA (%)                                                                                                                        |
| Other areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5454                                                                                                                                                                                       | 540                                                                                                                                                 | 325                                                                                                                                                                                                               | 36                                                                                                                                                                                                                                              | 2                                                                            | 92.60                                                                                                                         | 85.80                                                                                                                         |
| Degrade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 313                                                                                                                                                                                        | 961                                                                                                                                                 | 382                                                                                                                                                                                                               | 173                                                                                                                                                                                                                                             | 25                                                                           | 52.29                                                                                                                         | 51.83                                                                                                                         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 118                                                                                                                                                                                        | 212                                                                                                                                                 | 425                                                                                                                                                                                                               | 105                                                                                                                                                                                                                                             | 29                                                                           | 33.60                                                                                                                         | 47.81                                                                                                                         |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                          | 114                                                                                                                                                 | 122                                                                                                                                                                                                               | 495                                                                                                                                                                                                                                             | 108                                                                          | 53.05                                                                                                                         | 58.65                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                            |                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                 |                                                                              |                                                                                                                               |                                                                                                                               |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                          | 11                                                                                                                                                  | 11                                                                                                                                                                                                                | 124                                                                                                                                                                                                                                             | 712                                                                          | 81.28                                                                                                                         | 82.98                                                                                                                         |
| 3<br>Table 5. Confusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n matrix of SVM poly                                                                                                                                                                       | nomial method                                                                                                                                       |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                 |                                                                              |                                                                                                                               |                                                                                                                               |
| 3<br>Table 5. Confusion<br>Class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n matrix of SVM poly<br>Other areas                                                                                                                                                        | nomial method<br>Degrade                                                                                                                            | 1                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                               | 3                                                                            | PA (%)                                                                                                                        | UA (%)                                                                                                                        |
| 3<br>Cable 5. Confusion<br>Class<br>Other areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n matrix of SVM poly<br>Other areas<br>5475                                                                                                                                                | nomial method<br>Degrade<br>339                                                                                                                     | 1<br>318                                                                                                                                                                                                          | 2<br>22                                                                                                                                                                                                                                         | 32                                                                           | PA (%)<br>92.95                                                                                                               | UA (%)<br>88.94                                                                                                               |
| 3<br>Cable 5. Confusion<br>Class<br>Other areas<br>Degrade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n matrix of SVM poly<br>Other areas<br>5475<br>269                                                                                                                                         | nomial method<br>Degrade<br>339<br>1191                                                                                                             | 1<br>318<br>163                                                                                                                                                                                                   | 2<br>22<br>140                                                                                                                                                                                                                                  | 3<br>2<br>8                                                                  | PA (%)<br>92.95<br>64.80                                                                                                      | UA (%)<br>88.94<br>67.25                                                                                                      |
| 3<br>Table 5. Confusion<br>Class<br>Other areas<br>Degrade<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n matrix of SVM poly<br>Other areas<br>5475<br>269<br>144                                                                                                                                  | nomial method<br>Degrade<br>339<br>1191<br>234                                                                                                      | 1<br>318<br>163<br>685                                                                                                                                                                                            | 2<br>22<br>140<br>163                                                                                                                                                                                                                           | 3<br>2<br>8<br>46                                                            | PA (%)<br>92.95<br>64.80<br>54.15                                                                                             | UA (%)<br>88.94<br>67.25<br>53.85                                                                                             |
| 3<br>Sable 5. Confusion<br>Class<br>Other areas<br>Degrade<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n matrix of SVM poly<br>Other areas<br>5475<br>269<br>144<br>2                                                                                                                             | nomial method<br>Degrade<br>339<br>1191<br>234<br>73                                                                                                | 1<br>318<br>163<br>685<br>92                                                                                                                                                                                      | 2<br>22<br>140<br>163<br>548                                                                                                                                                                                                                    | 3<br>2<br>8<br>46<br>118                                                     | PA (%)<br>92.95<br>64.80<br>54.15<br>58.74                                                                                    | UA (%)<br>88.94<br>67.25<br>53.85<br>65.79                                                                                    |
| 3<br>Cable 5. Confusion<br>Class<br>Other areas<br>Degrade<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n matrix of SVM poly<br>Other areas<br>5475<br>269<br>144                                                                                                                                  | nomial method<br>Degrade<br>339<br>1191<br>234                                                                                                      | 1<br>318<br>163<br>685                                                                                                                                                                                            | 2<br>22<br>140<br>163                                                                                                                                                                                                                           | 3<br>2<br>8<br>46                                                            | PA (%)<br>92.95<br>64.80<br>54.15                                                                                             | UA (%)<br>88.94<br>67.25<br>53.85                                                                                             |
| 3<br>Cable 5. Confusion<br>Class<br>Other areas<br>Degrade<br>1<br>2<br>3<br>Cable 6. Confusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n matrix of SVM poly<br>Other areas<br>5475<br>269<br>144<br>2<br>0<br>n matrix of SVM radia                                                                                               | nomial method<br>Degrade<br>339<br>1191<br>234<br>73<br>1<br>1<br>al method                                                                         | 1<br>318<br>163<br>685<br>92<br>7                                                                                                                                                                                 | 2<br>22<br>140<br>163<br>548<br>60                                                                                                                                                                                                              | 3<br>2<br>8<br>46<br>118<br>702                                              | PA (%)<br>92.95<br>64.80<br>54.15<br>58.74<br>80.14                                                                           | UA (%)<br>88.94<br>67.25<br>53.85<br>65.79<br>91.17                                                                           |
| 3<br>Cable 5. Confusion<br>Class<br>Other areas<br>Degrade<br>1<br>2<br>3<br>Cable 6. Confusion<br>Class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n matrix of SVM poly<br>Other areas<br>5475<br>269<br>144<br>2<br>0<br>n matrix of SVM radia<br>Other areas                                                                                | nomial method<br>Degrade<br>339<br>1191<br>234<br>73<br>1<br>al method<br>Degrade                                                                   | 1<br>318<br>163<br>685<br>92<br>7                                                                                                                                                                                 | 2<br>22<br>140<br>163<br>548<br>60<br>2                                                                                                                                                                                                         | 3<br>2<br>8<br>46<br>118                                                     | PA (%)<br>92.95<br>64.80<br>54.15<br>58.74<br>80.14<br>PA (%)                                                                 | UA (%)<br>88.94<br>67.25<br>53.85<br>65.79<br>91.17                                                                           |
| 3<br>Cable 5. Confusion<br>Class<br>Other areas<br>Degrade<br>1<br>2<br>3<br>Cable 6. Confusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n matrix of SVM poly<br>Other areas<br>5475<br>269<br>144<br>2<br>0<br>n matrix of SVM radia                                                                                               | nomial method<br>Degrade<br>339<br>1191<br>234<br>73<br>1<br>1<br>al method                                                                         | 1<br>318<br>163<br>685<br>92<br>7                                                                                                                                                                                 | 2<br>22<br>140<br>163<br>548<br>60                                                                                                                                                                                                              | 3<br>2<br>8<br>46<br>118<br>702                                              | PA (%)<br>92.95<br>64.80<br>54.15<br>58.74<br>80.14                                                                           | UA (%)<br>88.94<br>67.25<br>53.85<br>65.79<br>91.17                                                                           |
| 3<br>Cable 5. Confusion<br>Class<br>Other areas<br>Degrade<br>1<br>2<br>3<br>Cable 6. Confusion<br>Class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n matrix of SVM poly<br>Other areas<br>5475<br>269<br>144<br>2<br>0<br>n matrix of SVM radia<br>Other areas<br>5505<br>241                                                                 | nomial method<br>Degrade<br>339<br>1191<br>234<br>73<br>1<br>al method<br>Degrade                                                                   | 1<br>318<br>163<br>685<br>92<br>7                                                                                                                                                                                 | 2<br>22<br>140<br>163<br>548<br>60<br>2                                                                                                                                                                                                         | 3<br>2<br>8<br>46<br>118<br>702<br>3                                         | PA (%)<br>92.95<br>64.80<br>54.15<br>58.74<br>80.14<br>PA (%)                                                                 | UA (%)<br>88.94<br>67.25<br>53.85<br>65.79<br>91.17<br>UA (%)                                                                 |
| 3<br>Cable 5. Confusion<br>Class<br>Other areas<br>Degrade<br>1<br>2<br>3<br>Cable 6. Confusion<br>Class<br>Other areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n matrix of SVM poly<br>Other areas<br>5475<br>269<br>144<br>2<br>0<br>n matrix of SVM radia<br>Other areas<br>5505                                                                        | nomial method<br>Degrade<br>339<br>1191<br>234<br>73<br>1<br>al method<br>Degrade<br>337                                                            | 1<br>318<br>163<br>685<br>92<br>7<br>1<br>1<br>309                                                                                                                                                                | 2<br>22<br>140<br>163<br>548<br>60<br>2<br>24                                                                                                                                                                                                   | 3<br>2<br>8<br>46<br>118<br>702<br>3<br>1                                    | PA (%)<br>92.95<br>64.80<br>54.15<br>58.74<br>80.14<br>PA (%)<br>93.46                                                        | UA (%)<br>88.94<br>67.25<br>53.85<br>65.79<br>91.17<br>UA (%)<br>89.14                                                        |
| 3<br>Cable 5. Confusion<br>Class<br>Other areas<br>Degrade<br>1<br>2<br>3<br>Cable 6. Confusion<br>Class<br>Other areas<br>Degrade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n matrix of SVM poly<br>Other areas<br>5475<br>269<br>144<br>2<br>0<br>n matrix of SVM radia<br>Other areas<br>5505<br>241                                                                 | nomial method<br>Degrade<br>339<br>1191<br>234<br>73<br>1<br>al method<br>Degrade<br>337<br>1162                                                    | 1<br>318<br>163<br>685<br>92<br>7<br>1<br>1<br>309<br>158                                                                                                                                                         | 2<br>22<br>140<br>163<br>548<br>60<br>2<br>24<br>130                                                                                                                                                                                            | 3<br>2<br>8<br>46<br>118<br>702<br>3<br>1<br>8                               | PA (%)<br>92.95<br>64.80<br>54.15<br>58.74<br>80.14<br>PA (%)<br>93.46<br>63.22                                               | UA (%)<br>88.94<br>67.25<br>53.85<br>65.79<br>91.17<br>UA (%)<br>89.14<br>68.39                                               |
| 3<br>Table 5. Confusion<br>Class<br>Other areas<br>Degrade<br>1<br>2<br>3<br>Table 6. Confusion<br>Class<br>Other areas<br>Degrade<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n matrix of SVM poly<br>Other areas<br>5475<br>269<br>144<br>2<br>0<br><u>n matrix of SVM radia</u><br>Other areas<br>5505<br>241<br>142                                                   | nomial method<br>Degrade<br>339<br>1191<br>234<br>73<br>1<br>al method<br>Degrade<br>337<br>1162<br>257                                             | 1<br>318<br>163<br>685<br>92<br>7<br>7<br>1<br>1<br>309<br>158<br>695                                                                                                                                             | 2<br>22<br>140<br>163<br>548<br>60<br>2<br>24<br>130<br>161                                                                                                                                                                                     | 3<br>2<br>8<br>46<br>118<br>702<br>3<br>1<br>8<br>48                         | PA (%)<br>92.95<br>64.80<br>54.15<br>58.74<br>80.14<br>PA (%)<br>93.46<br>63.22<br>54.94                                      | UA (%)<br>88.94<br>67.25<br>53.85<br>65.79<br>91.17<br>UA (%)<br>89.14<br>68.39<br>53.34                                      |
| 3<br>Sable 5. Confusion<br>Class<br>Other areas<br>Degrade<br>1<br>2<br>3<br>Sable 6. Confusion<br>Class<br>Other areas<br>Degrade<br>1<br>2<br>3<br>Other areas<br>Degrade<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n matrix of SVM poly<br>Other areas<br>5475<br>269<br>144<br>2<br>0<br>n matrix of SVM radia<br>Other areas<br>5505<br>241<br>142<br>2<br>0                                                | nomial method<br>Degrade<br>339<br>1191<br>234<br>73<br>1<br>al method<br>Degrade<br>337<br>1162<br>257<br>81<br>1                                  | 1<br>318<br>163<br>685<br>92<br>7<br>1<br>1<br>309<br>158<br>695<br>97                                                                                                                                            | 2<br>22<br>140<br>163<br>548<br>60<br>2<br>24<br>130<br>161<br>553                                                                                                                                                                              | 3<br>2<br>8<br>46<br>118<br>702<br>3<br>1<br>8<br>48<br>128                  | PA (%)<br>92.95<br>64.80<br>54.15<br>58.74<br>80.14<br>PA (%)<br>93.46<br>63.22<br>54.94<br>59.27                             | UA (%)<br>88.94<br>67.25<br>53.85<br>65.79<br>91.17<br>UA (%)<br>89.14<br>68.39<br>53.34<br>64.23                             |
| 3<br>Table 5. Confusion<br>Class<br>Other areas<br>Degrade<br>1<br>2<br>3<br>Table 6. Confusion<br>Class<br>Other areas<br>Degrade<br>1<br>2<br>3<br>Table 7. Confusion<br>Table 7. Confusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n matrix of SVM poly<br>Other areas<br>5475<br>269<br>144<br>2<br>0<br>n matrix of SVM radia<br>Other areas<br>5505<br>241<br>142<br>2<br>0<br>n matrix of SVM sigm                        | nomial method<br>Degrade<br>339<br>1191<br>234<br>73<br>1<br>al method<br>Degrade<br>337<br>1162<br>257<br>81<br>1<br>woid method                   | 1<br>318<br>163<br>685<br>92<br>7<br>1<br>1<br>309<br>158<br>695<br>97<br>6                                                                                                                                       | $     \begin{array}{r}       2 \\       22 \\       140 \\       163 \\       548 \\       60 \\       \hline       2 \\       24 \\       130 \\       161 \\       553 \\       65 \\       \hline       55       \end{array} $               | 3<br>2<br>8<br>46<br>118<br>702<br>3<br>1<br>8<br>48<br>128<br>691           | PA (%)<br>92.95<br>64.80<br>54.15<br>58.74<br>80.14<br>PA (%)<br>93.46<br>63.22<br>54.94<br>59.27<br>78.88                    | UA (%)<br>88.94<br>67.25<br>53.85<br>65.79<br>91.17<br>UA (%)<br>89.14<br>68.39<br>53.34<br>64.23<br>90.56                    |
| 3<br>Table 5. Confusion<br>Class<br>Other areas<br>Degrade<br>1<br>2<br>3<br>Table 6. Confusion<br>Class<br>Other areas<br>Degrade<br>1<br>2<br>3<br>Table 7. Confusion<br>Class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n matrix of SVM poly<br>Other areas<br>5475<br>269<br>144<br>2<br>0<br>n matrix of SVM radia<br>Other areas<br>5505<br>241<br>142<br>2<br>0<br>n matrix of SVM sigm<br>Other areas         | nomial method<br>Degrade<br>339<br>1191<br>234<br>73<br>1<br>al method<br>Degrade<br>337<br>1162<br>257<br>81<br>1<br>1<br>noid method<br>Degrade   | $     \begin{array}{r}       1 \\       318 \\       163 \\       685 \\       92 \\       7 \\       \hline       1 \\       309 \\       158 \\       695 \\       97 \\       6 \\       1       \end{array} $ | 2<br>22<br>140<br>163<br>548<br>60<br>2<br>24<br>130<br>161<br>553<br>65<br>2                                                                                                                                                                   | 3<br>2<br>8<br>46<br>118<br>702<br>3<br>1<br>8<br>48<br>128<br>691<br>3      | PA (%)<br>92.95<br>64.80<br>54.15<br>58.74<br>80.14<br>PA (%)<br>93.46<br>63.22<br>54.94<br>59.27<br>78.88<br>PA (%)          | UA (%)<br>88.94<br>67.25<br>53.85<br>65.79<br>91.17<br>UA (%)<br>89.14<br>68.39<br>53.34<br>64.23<br>90.56<br>UA (%)          |
| 3<br>Table 5. Confusion<br>Class<br>Other areas<br>Degrade<br>1<br>2<br>3<br>Table 6. Confusion<br>Class<br>Other areas<br>Degrade<br>1<br>2<br>3<br>Table 7. Confusion<br>Class<br>Other areas<br>Degrade<br>1<br>2<br>3<br>Class<br>Other areas<br>Degrade<br>Class<br>Other areas<br>Degrade<br>Class<br>Other areas<br>Degrade<br>Class<br>Other areas<br>Degrade<br>Other areas<br>Degrade<br>Class<br>Other areas<br>Degrade<br>Other areas<br>Other areas<br>Degrade<br>Other areas<br>Degrade<br>Other areas<br>Other areas<br>Other areas<br>Other areas<br>Other areas<br>Other areas<br>Other areas<br>Other areas<br>Other areas | n matrix of SVM poly<br>Other areas<br>5475<br>269<br>144<br>2<br>0<br>n matrix of SVM radia<br>Other areas<br>5505<br>241<br>142<br>2<br>0<br>n matrix of SVM sigm<br>Other areas<br>5416 | nomial method<br>Degrade<br>339<br>1191<br>234<br>73<br>1<br>al method<br>Degrade<br>337<br>1162<br>257<br>81<br>1<br>noid method<br>Degrade<br>643 | 1<br>318<br>163<br>685<br>92<br>7<br>1<br>309<br>158<br>695<br>97<br>6<br>1<br>285                                                                                                                                | $     \begin{array}{r}       2 \\       22 \\       140 \\       163 \\       548 \\       60 \\       \hline       2 \\       24 \\       130 \\       161 \\       553 \\       65 \\       \hline       2 \\       46 \\       \end{array} $ | 3<br>2<br>8<br>46<br>118<br>702<br>3<br>1<br>8<br>48<br>128<br>691<br>3<br>1 | PA (%)<br>92.95<br>64.80<br>54.15<br>58.74<br>80.14<br>PA (%)<br>93.46<br>63.22<br>54.94<br>59.27<br>78.88<br>PA (%)<br>91.95 | UA (%)<br>88.94<br>67.25<br>53.85<br>65.79<br>91.17<br>UA (%)<br>89.14<br>68.39<br>53.34<br>64.23<br>90.56<br>UA (%)<br>84.74 |
| 3<br>Table 5. Confusion<br>Class<br>Other areas<br>Degrade<br>1<br>2<br>3<br>Table 6. Confusion<br>Class<br>Other areas<br>Degrade<br>1<br>2<br>3<br>Table 7. Confusion<br>Class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n matrix of SVM poly<br>Other areas<br>5475<br>269<br>144<br>2<br>0<br>n matrix of SVM radia<br>Other areas<br>5505<br>241<br>142<br>2<br>0<br>n matrix of SVM sigm<br>Other areas         | nomial method<br>Degrade<br>339<br>1191<br>234<br>73<br>1<br>al method<br>Degrade<br>337<br>1162<br>257<br>81<br>1<br>1<br>noid method<br>Degrade   | $     \begin{array}{r}       1 \\       318 \\       163 \\       685 \\       92 \\       7 \\       \hline       1 \\       309 \\       158 \\       695 \\       97 \\       6 \\       1       \end{array} $ | 2<br>22<br>140<br>163<br>548<br>60<br>2<br>24<br>130<br>161<br>553<br>65<br>2                                                                                                                                                                   | 3<br>2<br>8<br>46<br>118<br>702<br>3<br>1<br>8<br>48<br>128<br>691<br>3      | PA (%)<br>92.95<br>64.80<br>54.15<br>58.74<br>80.14<br>PA (%)<br>93.46<br>63.22<br>54.94<br>59.27<br>78.88<br>PA (%)          | UA (%)<br>88.94<br>67.25<br>53.85<br>65.79<br>91.17<br>UA (%)<br>89.14<br>68.39<br>53.34<br>64.23<br>90.56<br>UA (%)          |

Table 2. Performance of supervised classification methods

All classification methods have generally low accuracy for classification of degrade, 1 and 2 crown closure classes. The reason for this, reflectance values of these classes were close to each other in training areas. So, classification methods were not distinguished correctly. The highest accuracy rate was obtained for other areas and 3 crown closure classes. The most accurate methods in terms of producer accuracy were SVM radial (other areas), SVM polynomial (degrade) and maximum likelihood (1,2 and 3 crown closure). The most accurate methods in terms of user accuracy were maximum likelihood (other areas), SVM radial (degrade) and SVM polynomial (1, 2 and 3 crown closure). In addition that all classification maps were displayed (Figure 2).

48.87

80.02

53.58

81.42

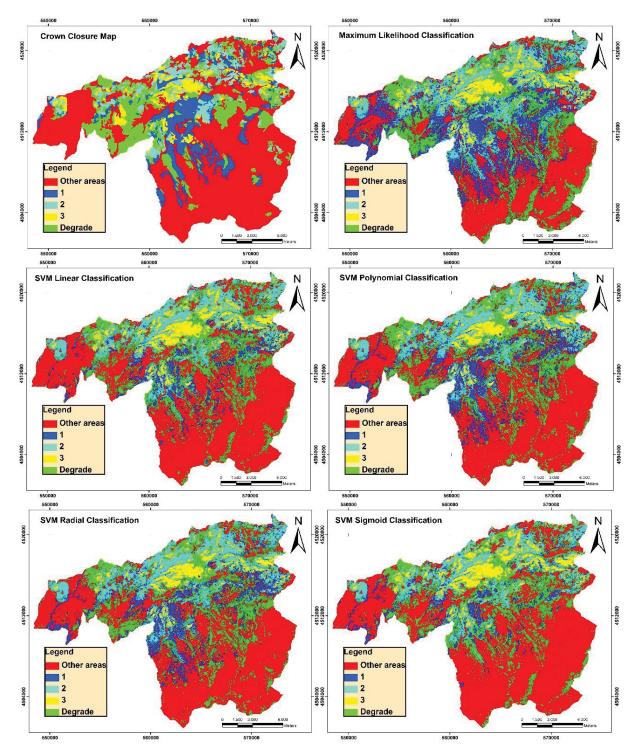



Figure 2. Stand and classification maps

#### 4. Conclusions

In this study, maximum likelihood, SVM linear, SVM polynomial, SVM radial and SVM sigmoid supervised classification methods were compared in terms of crown closure. Landsat TM satellite image was used for classification. Although the most accurate method was SVM radial according to accuracy rate, maximum likelihood, which is the most common classification method, is more suitable for ease of use. In conclusion, it should be applied to different satellite images, fields and parameters so that better comparison of methods can be made.

#### References

- Bulut, S., Günlü, A., 2016. Arazi kullanım sınıfları için farklı kontrollü sınıflandırma algoritmalarının karşılaştırılması. Kastamonu Üniversitesi, Orman Fakültesi Dergisi, 16(2):528-535.
- Günlü, A., Sivrikaya, F., Başkent, E.Z., Keleş, S., Çakır, G., Kadıoğullari, A.İ., 2008. Estimation of stand type parameters and land cover using Landsat-7 ETM image: a case study from Turkey, Sensors 2008, 8, 2509-2525.
- Günlü, A., Keleş, S., Kadıoğullari, A.İ., Başkent, E.Z., 2011. Landsat 7 ETM+ uydu görüntüsü yardimiyla arazi kullanimi, meşcere gelişim çaği ve meşcere kapaliliğin tahmin edilmesi; Kastamonu-Kızılcasu İşletme Şefliği örneği. I. Ulusal Akdeniz Orman ve Çevre Sempozyumu (26-28 Ekim 2011), 660-667, Kahramanmaraş, Türkiye.
- Günlü, A., 2012. Landsat TM uydu görüntüsü yardımıyla bazı meşcere parametreleri (gelişim çağı ve kapalılık) ve arazi kullanım sınıflarının belirlenmesi. Kastamonu Üniversitesi, Orman Fakültesi Dergisi, 12(1):71-79.
- Kavzoğlu, T., Çölkesen, İ., 2010. Destek vektör makineleri ile uydu görüntülerinin sınıflandırılmasında kernel fonksiyonlarının etkilerinin incelenmesi. Harita Dergisi, Temmuz 2010, 144:73-82.
- Otukei, J., Blaschke, T., 2010. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int J Appl Earth Obs Geoinf 12:S27–S31.
- Srivastava, P.K., Han, D., Rico-Ramirez, M.A., Bray, M., Islam, T., 2012. Selection of classification techniques for land use/land cover change investigation. Adv Space Res 50(9):1250-1265.
- Taati, A., Sarmadian, F., Mousavi, A., Pour, C.T.H., Shahir, A.H.E., 2014. Land use classification using support vector machine and maximum likelihood algorithms by Landsat 5 TM images. Walailak Journal of Science and Technology, 12(8): 681-687.