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Abstract: Some data characteristics (such as cause of heteroscedasticity or autocorrelation problems) can complicate fairly 
understanding the forest growth behavior. As the stand conditions can change over time, the measurements can be more similar 
each other in same time period than to measurements from other time periods. Therefore, the data obtained from the forest 
inventory are temporally dependent, which is called “temporal autocorrelation problem”. Nonlinear least square (NLS) regression 
developed by using diameter increment values ,originating from stem analysis, leads to biased estimates of parameter confidence
interval and prediction interval in forest growth models when NLS regression are applied without removing temporal 
autocorrelation effect. Therefore, this study focus on solving “temporal autocorrelation problem” caused by multiple 
measurements from individual trees. To overcome this problem, we compared the Negative Exponential, the Gompertz and the 
Logistic nonlinear models accounting for p-order autoregressive process. The results showed that the AR2 process based on the 
Gompertz model contributed considerably for increasing the adjusted determination coefficient (0.6545 to 0.9630) and removed 
the temporal autocorrelation effect (Durbin-Watson test value was 2.0201). AR2 process, also, based on the Gompertz model 
produced a considerable decreasing for the root mean squared error (69.7048 to 22.8368). The autoregressive model proved that 
the forest managers may confidently use the diameter increment values obtained from multiple measurements over time in forest 
ecosystems. 
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1. Introduction 

As developing forest growth models, the forest biometricians should pay more attention to modeling techniques, data 
characteristics, and statistical assumptions. These are crucial factors affecting model performance and limiting model 
applicability (Soares, et al. 1995; Thürig, et al. 2005)

In literature, the forest growth models have been developed using regression analysis. Before these models are fitted to 
forest inventory data, the some statistical assumptions should be ensured, such as the normal distribution of data, the 
homogeneity of variance, and the independence of observations (Zuur, et al. 2010). If this assumptions do not being 
considered cautiously, the forest growth model most likely will be inadequate for fitting to real data in a model. The data 
derived from stem analysis have a temporally hierarchal structure, meaning that the repeated measurements on the same 
individuals result in correlated data. This leads to violation of independence assumption among the observations. This data 
structure causes the biased parameter estimations, unexpected results, and consequently misunderstanding inferences (Zuur, et 
al. 2010; Paine, et al. 2012). Autoregressive modeling approach used for specifying the temporal dependence has been used 
widely in time-series analysis, and recently it has often been applied in the forest growth studies (Monserud 1986; Huang and 
Titus 1999; Fox, et al. 2001; Zhao, et al. 2013; Saud, et al. 2016; Kiaei, et al. 2017) 

The diameter growth trend may changes over time depending on the plant inner characteristic, the resource availability, 
and the competition among species (Paine, et al. 2012). Thereby, the diameter growth shows a sigmoid curve, having an 
inflection point and reaching asymptote after a given time. Nonlinear models are asymptotic and concave-down, allowing to 
capture rapid increment at the earlier ages and slow increment at the older ages, and consequently to ensure the biological 
growth trend. Recently, therefore, the forest biometricians prefer to nonlinear models for fitting to diameter data as a function
of age or height (Fekedulegn, et al. 1999; Bi, et al. 2012). 

In this study, the first purpose is to develop some the nonlinear models as a function of age in order to predict diameter 
increments at different ages. The second purpose is to remove the temporal autocorrelation effects in stem analysis data by 
using the first-order and the second-order autoregressive models.  

2. Material and methods 

The data used in this study were collected from even-aged Scotch pine ( L.) stands located in the Çankırı, 
Yapraklı and Yenice (Ilgaz) Planning Unit, Ankara Forest District Directorate, Turkey. In this study, dominant or co-dominat 
trees being as the 100 trees of greatest height per hectare were sampled for stem analysis in the sample plots. These 106 
sampling trees for stem analysis were felled, and also the cross-sectional cuts were made at the first 0.3 m and every 2 m 
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throughout the tree stem. On each tree the annual rings were counted at 0.3 (m) and the diameter (mm) at different ages were 
derived from stem analysis measurements. Summary statistics of stem analysis data were shown in Table 1. 

Table 1. Summary statistics of the diameters (mm) at 0.3m 
Min Max Arithmetic mean Std. Deviation
2.0 1250.0 172.2 120.7

A number of statistical growth functions have been used to model the diameter increment - age relationship in forest 
literature. In this study, the different three nonlinear models were fitted to stem analysis data using SAS PROC Model 
procedure. The nonlinear models considered in this study were presented in Table 2.  

Table 2. The nonlinear growth models used in this study 
Model name Functional form

Negative Exponential

Gompertz

Logistic

 and  are the model coefficients, t is age (year), d is diameter (mm) 

  
To remove temporal autocorrelation effects in the diameter increment prediction, we used the first-order (AR1) and the 

second-order (AR2) autoregressive models using SAS software (Appendix A).

                            (AR1) 

              (AR2) 

Where: d (the diameters at different ages) and t (age) are observations, c and  are determined by nonlinear least square, ε 
is random with mean zero and serially independent.  

Model comparison was carried out based on the root mean squared error ( ) and the adjusted determination 
coefficient ( ) in order to identify the best model. Durbin-Watson (DW) test was used for quantifying temporal 
autocorrelation existing among the error terms. The effects of autoregressive process were evaluated using residual graphics of 
the best model selected based on model selection criteria. 

3. Result and discussion 

We developed nonlinear regression models including the Negative Exponential, the Gompertz and the Logistic models and 
predicted the parameters. Parameter prediction and its significance (at the 5% probability level), model performance criteria 
and Durbin-Watson statistic results were given in Table 3. For all the models used in this study, the parameter predictions 
were found to be significant at the 0.05 probability level (P < 0.05). The DW test results showed that there was positive 
autocorrelation (0 < DW < 2) among the error terms for all used nonlinear models. The best predictive model was the 
Negative Exponential model with the second autoregressive process (AR2) having adjusted determination coefficient of 
0.9637 and the root mean squared error of 22.5845 mm in terms of the model selection criteria. However, Fekedulegn, et al. 
(1999) reported that the Negative exponential model was not adequate for describing the biological growth trend because it 
has not inflection points and is not sigmoid shaped. Thereby, we decided to perform the Gompertz model for describing the 
diameter increment, which its adjusted determination coefficient was 0.9630 and the root mean squared error value was 
22.8368 mm. Tjørve and Tjørve (2010) corroborated the decision, the Richards-model family such as the Gompertz, and the 
logistic produced a satisfactory result for the organisms (plant or animal) which exhibit a sigmoid growth.  Tewari and Kumar 
(2005) found that the Gompertz model was the proper for diameter prediction in Dalbergia Sissoo plantations. 
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Table 3. The parameter estimations of the models and model selection criteria results 
Model Parameters RMSE Durbin-Watson Pr<DW Pr>DW

Negative Exponential 69.2303 0.6592 0.1106 <0.0001 1.0000
=1819.3150

=0.0016
Negative Exponential (AR2) 22.5845 0.9637 2.0190 0.6755 0.3245

=1365.5020

=0.0023

=1.0345

=-0.0932
,  and  are the parameter coefficients 

Pr<DW was less than 0.05, meaning that there is the autocorrelation among the error terms 
DW= 2 means no autocorrelation
0 < DW < 2 means positive autocorrelation
2 < DW < 4 means is negative autocorrelation 

Table 3 (Continue). The parameter estimations of the models and model selection criteria results 
Model Parameters RMSE Durbin-Watson Pr<DW Pr>DW

Gompertz 69.7048 0.6545 0.1170 <0.0001 1.0000
=444.3968

=2.9328

=0.0185

Gompertz 
(AR2) 22.8368 0.9630 2.0201 0.6797 0.3203

=511.4391

=2.7159

=0.0170

=1.0481

=-0.1009

Logistic 70.2359 0.6492 0.1242 <0.0001 1.0000
=376.5500

=9.8121

=0.0340

Logistic 
(AR2) 23.0781 0.9621 2.0170 0.6527 0.3473

=480.1943

=6.8316

=0.0280

=1.0597

=-0.1000
,  and  are the parameter coefficients 

Pr<DW was less than 0.05, meaning that there is the autocorrelation among the error terms 
DW= 2 means no autocorrelation
0 < DW < 2 means positive autocorrelation
2 < DW < 4 means is negative autocorrelation

The temporal autocorrelation impacts greatly the regression model results in terms of the adjusted coefficient of 
determination ( ) and the root mean squared error (RMSE). In our study, we found that   was approximately 0.70 for 
all the considered models when the autocorrelation effects did not remove (table 3). For increasing the models performance, 
firstly, the first-order autoregressive process (AR1) based on the Gompertz model was applied to remove the positive 
autocorrelation effects, but this attempt was failed to remove the autocorrelation effects whereas the  increased 
considerably ( 45%) and all the parameters were statistically significant (at 5% level, table 3). AR2 process based on the 
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Gompertz model provided both the solution to eliminate the autocorrelation effects and a significant increase for 
( 45%). Also, the AR2 process contributed greatly to being reduced RMSE ( 65%, table 3).

Figure 1. The residual distributions of Gompertz model 

Figure 2. The residual distributions of Gompertz model based on AR1 

Figure 3. The residual distributions of Gompertz model based on AR2 
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Zuur, et al. (2010) reported that the parametric statistical analysis assume to be the independent of residuals, but this 

assumption is often violated in forest populations. Theoretically, if the observations are independent, the model residuals are 
randomly scattered around zero. In our study, the Gompertz model residuals exhibited a dispersed distribution because the 
observations were highly correlated (figure 1, table 3).  The AR1 process produced a normally residual distribution, which is 
close to zero, but it could not eliminate the temporal autocorrelation in diameter increments (table 3, figure 2). AR2 process 
showed a scattered residual distribution about zero (figure 3). The Durbin-Watson (DW) test for AR2 process exhibited to be 
non-autocorrelation in the residuals (table 3). Monserud (1986) reported that AR1 process was adequately not account for the 
error variance as it was expected and the higher-order autoregressive process (e.g. AR2, AR3) was better choice in order to 
removing temporal autocorrelation effects in tree-ring chronologies. In contrast Biging and Gill (1997) reported that AR1 
process provided an adequate solution to removal of temporal autocorrelation effects and also to ensured assumption relevant 
to homogeneity of error variance for describing the tree crown profile. Huang and Titus (1999) found that whereas the 
nonlinear models including AR1 process contributed slightly a decrease of RMSE, the autoregressive process provided the 
normal distribution of error terms for tree height predictions. 

Consequently, we emphasized that the violation of statistical assumptions had a great effect on nonlinear model fitting to 
stem analysis data in terms of error variance and model performance. We demonstrated the AR2 process was capable of 
removing temporal autocorrelation effects in stem analysis data. In next studies relevant to the temporal autocorrelation, forest 
biometricians should consider the autoregressive modeling techniques. 
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Appendix A. 

The SAS software interface for the Gompertz model used in this study is given below.

data isparta; (Write your worksheet name)
input t d; (Write your dependent and independent name)
cards;

5 7
15 20
20 30 (Write your own dependent and independent values)
.
.
.
;
run;

PROC Model data=isparta;

parameters  b0=380.2443 b1=2.966557 b2=0.022082;       (You should determine proper starting values)

d=b0*exp(-b1*exp(-b2*t)); (Write equation)

% (d, 2; (This means the second-order autoregressive process)

fit d/dw dwprob;

run;

NOTE: If you want to print the all predictions and the all residuals, you must add codes expressed as italic; 

fit artim/dw dwprob ;
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